Question			Answer	Marks	Guidance
1	(a)	(i)	polysaccharide ;	1	Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then $=\mathbf{0}$ marks ACCEPT phonetic spelling IGNORE polymer IGNORE oligosaccharide
		(ii)	similarity chain / unbranched / glycosidic bonds / (contain) hexose / hex ring / O in each ring / CHO ; difference agarose has: two types of (glycosidic) bond or two different, sugars / sugar residues / monosaccharides or disaccharide, monomer / subunit / AW or (residues) are alternately rotated / AW or straight chain ;	2	IGNORE polysaccharides IGNORE 6-carbon ring ACCEPT 5-carbon ring Assume answer refers to agarose unless otherwise stated ACCEPT ora for any point DO NOT CREDIT references to any incorrect bond ACCEPT any suggestion of bonding to different numbered carbon atoms (as numbers are not given in diagram) ACCEPT 'alternating bonds' IGNORE refs to glucose ACCEPT 'flipped' / 'reflected' ACCEPT 'amylose is coiled'

| Question | | Answer | Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| (b) | (bacteria) do not, make / have, correct enzyme (to digest
 agarose);
 agarose, does not fit / not complementary to, active site
 (of bacterial enzymes); | $\mathbf{1}$ max
 (c)
 bacteria unable to transport , substrate / enzyme , across
 membrane ; | DO NOT CREDIT in incorrect context e.g. 'bacteria do not
 have amylase' or 'bacterial enzyme cannot break down
 amylose' |
| (i) | control ;
 compare with tube A / see what happened when there was
 no bacteria / show it was bacteria doing it / to show it does
 not break down on its own / to show that the nutrient
 solution does not break it down ; | $\mathbf{2}$ | ACCEPT 'compare it with the other tube'
 IGNORE 'compare the tubes' |

Question		Answer	Marks	Guidance
(c)	(i	idea that some, starch / other polysaccharide / (reducing) sugar present in , nutrient solution / culture solution / bacteria (at start) ; presence of some mutated, E. coli / bacteria , (that can break it down) ; presence of (other) microorganism that can break it down ;	1 max	IGNORE experimental error unqualified IGNORE any reference to temperature IGNORE other carbohydrate
	(iii)	replicate(s) / repeat(s) ; more than one sample tested from each tube / sample each tube twice ;	2	Mark the first answer on each prompt line. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = $\mathbf{0}$ marks IGNORE 'do more tests' IGNORE 'disregard anomalous results' IGNORE 'compare with other results' IGNORE 'calculate mean'

uest			Answer	Marks	Guidance
(d)	(i)	1	add, Benedict's (reagent) / $\mathrm{CuSO}_{4}+\mathrm{NaOH} /$ alkaline copper sulphate ;	5 max	1 ACCEPT 'do Benedict's test' 1 DO NOT CREDIT if adding acid / hydrolysing
		2	heat		2 ALLOW boil 2 IGNORE warm 2 ACCEPT any temperature between $80^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ 2 ACCEPT gently heat
		3 4	(forms) precipitate ; (colour changes from blue to), green / yellow / orange / brown / (brick) red ;		
			concentration estimated from		Read as prose and mark the best suggestions
			EITHER		5/6 DO NOT AWARD if candidate is using a colorimeter
		5 a	degree of colour change / use different colours ;		5a ACCEPT 'the darker / redder, the more reducing sugar' 5a ACCEPT in context of precipitate or supernatant
		6 a	comparison (of final colour) with , standard / known, solution ; OR		6a Answers must include the idea of comparison 6a ACCEPT ref to calibration curve as long as not in context of colorimeter
		$\begin{aligned} & \text { 5b } \\ & \text { 6b } \end{aligned}$	filter / centrifuge , and weigh precipitate ; greater mass = more sugar present / use of a standard curve ;		6b ACCEPT weight 6b ACCEPT amount
			OR		
		$\begin{aligned} & 5 c \\ & 6 c \end{aligned}$	centrifuge; size , of pellet / colour of supernatant (liquid), indicates concentration;		6c ACCEPT mass

Question		Answer	Marks	Guidance
(ii)	1 2	add (hydrochloric) acid and boil ; add, (named) alkali / (sodium) carbonate / (sodium) hydrogencarbonate ; then carry out reducing sugar test (again) / described ;	3 max	Max 2 if any point out of sequence 1 CREDIT add hydrolytic enzyme 1 ACCEPT heat 2 CREDIT 'neutralise' if not contradicted by named chemical
		Total	17	

Question				Answer	Marks	Guidance
2	(a)		1 2 3 3 4 5 6 7	nucleus / nuclei ; other named organelle / membrane bound organelles; linear chromosomes ; DNA, associated with / AW, histones / protein ; 80S / 22nm / large, ribosomes ; large cells / AW ; no cell wall ;	2 max	Mark the first answer on each prompt line. ACCEPT ora throughout 1 ACCEPT 'DNA not free’ 2 e.g. mitochondria / Golgi / etc 2 ACCEPT compartmentalized organelles 2 ACCEPT don't have a mesosome 4 ACCEPT ‘DNA not naked’
	(b)			ital letter on, specific name / Vivax ; italicised / not underlined ;	1 max	Mark the first answer ACCEPT ora for what student should have typed ACCEPT 'the parasite is Plasmodium falciparum / malariae / ovale' if candidate uses capital ' P ' and lower case ' $/ / \mathrm{m} / \mathrm{o}$ '
	(c)	(i)	1 2 3	(mosquito), is vector ; Plasmodium / parasite, present in (mosquito), saliva / salivary gland ; idea that infected mosquito, feeds on / bites, human ; Plasmodium / parasite, passes (from saliva) to blood ;	3 max	IGNORE references to stages of life-cycle Max 2 if virus / bacterium appears anywhere 3 IGNORE case of initial ' P ' 3 Must be in context of transmission from mosquito to human 4 'blood' can be inferred, e.g. from refs to anticoagulant 4 IGNORE ref to parasite in blood after liver

\left.	Question		Answer	Marks	Guidance
(c)	(ii)		1 max	Mark the first suggestion	
destruction of a species is, morally / ethically, wrong;					
might cause unintended health problems in humans;					
might harm, other / unintended, species;					
idea of bioaccumulation / biomagnification;					$\right]$
:---					
Answers must imply idea of harm					

\begin{tabular}{|c|c|c|c|c|c|}
\hline Quest \& \& \& Answer \& Marks \& Guidance \\
\hline (c) \& (iii) \& F1
F2
F3

F4

F5
F6
F7
F8

F9 \& \begin{tabular}{l}
Field investigation \\
(sampling) before and after insecticide treatment ; \\
idea of, unbiased / random, sampling of population ; example of sampling technique ; \\
(sampling in) different, times / weather ; \\
large number of samples taken ; idea of standardised sampling procedure ; \\
idea of preventing counting same individual more than once ; \\
idea of capture - recapture ; \\
calculate mean / calculate standard deviation / apply statistical test ;

 \& 5 max \&

Award marks for either a field or laboratory investigation must read whole answer before beginning to mark to decide if field or laboratory. \\
If candidates answer in terms of incidence of malaria award no marks as question states population of mosquitoes but read whole question in case mosquito study described in addition. \\
If the investigation is in the both field and laboratory mark the investigation which gives candidate most marks. \\
F1 IGNORE refs to treated and untreated areas as stem refers to 'a population' \\
F3 e.g. sweep net, pond net, light trap \\
F3 ACCEPT insect net \\
F3 IGNORE 'net' or 'trap' unqualified \\
F4 IGNORE intervals unqualified. Answers must refer to time or weather \\
F5 Must imply large number or state five or more \\
F6 ACCEPT idea of counting by the same method
\end{tabular} \\

\hline
\end{tabular}

Question	Answer	Marks	Guidance
	OR Laboratory investigation idea of: with and without insecticide exposure ; measuring mosquito survival / count surviving mosquitoes ; L3 controlling one named key variable; L4 controlling second named key variable; L5 idea of using a range of insecticide concentrations ; L6 replicates; L7 calculate mean / calculate standard deviation / apply statistical test ;		Laboratory investigation could be done outside L1 is for changing the independent variable $\mathbf{L} 2$ is for measuring the dependent variable ACCEPT count the number of dead ones L3 and L4 award up to 2 marks for exposure time species of mosquito stage of mosquito life cycle sex of mosquito number of mosquitos insecticide type insecticide concentration volume of insecticide temperature L6 Minimum of 3 in total, i.e. original plus two L7 IGNORE average
	Total	12	

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(i)	1 sweep netting / sweep vegetation with a net ; 2 beating / beat trees and bushes; 3 pooter/pooting/described;	1 max	2 ACCEPT fogging 3 ACCEPT pitfall traps / described
	(a)	(ii)	idea of ladybirds not evenly distributed / some parts of hill different / more representative ; lets reliability be assessed / anomalies identified;	1 max	ACCEPT description e.g. could be more ladybirds one side than another ACCEPT increases reliability IGNORE accuracy / precision / removes anomalies
	(b)	(i)	M1 (calculate) \% / proportion / ratio ; E1 as different total numbers at each site ; or M2 (draw) bar chart / kite diagram ; E2 pictorial data easier to understand ;	2 max	M1 IGNORE χ^{2} M2 IGNORE histogram / line graph

Question		Expected Answers	Marks	Additional Guidance
(b)	(ii)	yes (for first statement) 1 first statement true / correlation exists; 2 number of black ladybirds increase, from 100 m to $300 \mathrm{~m} /$ until 300 m ; 3400 m number decrease but $\%$ black increases ; no (for second statement) 4 correlation not proof of causation / no proof of causal link / second statement not (necessarily) true ; 5 another (named) factor could be involved ;	3 max	If candidates argues 'yes' exclusively, can only be awarded mps 1-3 If candidate answers 'no' exclusively, can only be awarded mps 4 \& 5 Note percentage of black ladybirds increases as you go up the hill $=2$ marks $(\mathrm{mps} 2 \& 3)$ 5 CREDIT could be due to distance from town / more or less predation high up / camouflage / warning colours
(c)	(i)	only expressed , when homozygous / in absence of dominant (allele) ; not expressed when heterozygous / expression masked by dominant (allele) ;	1 max	DO NOT CREDIT gene IGNORE letters / genotypes ACCEPT only seen in phenotype when it is present in 'double dose'

Question		Expected Answers	Marks	Additional Guidance
(c)	(ii)	$1 \underline{q}^{2}=296 / 346$ or $0.85 / 0.855 / 0.86 ;$ $\mathbf{2} q=\sqrt{ }$ previous answer or $0.92 / 0.93 ;$ $3 p=1-$ previous answer or $0.08 / 0.07 ;$	3	1 DO NOT CREDIT calculation or figure unless it has been indicated as q^{2} 2 ACCEPT ecf 3 ACCEPT ecf Note If both \mathbf{p} and \mathbf{q} are correct $=\mathbf{3}$ marks If p and q not given to 2 decimal places then penalise 1 mark and then apply ecf - If the 2 final answers add up to 1 give mp 3, then look for evidence of mps 1 or 2 in the working - If the 2 final answers do not add up to 1 , look for evidence of mps $1,2 \& 3$ in the working - Award the working mark(s) if method correct, even if subsequent calculation incorrect (e.g. $1-0.54=0.56$ could get mp 3 for ' 1 - previous answer’ even though 0.56 is the incorrect answer for the calculation) e.g. if black allele wrongly assumed to be recessive $q=0.38$ or $q=\sqrt{ } 0.1445$ give mp 2 as ecf $p=0.62$ or $p=1-0.38$ give $m p 3$ as ecf e.g. if answer given as $q=0.85$ and $p=0.15$ give mp 3 They will not get mp 1 as they think that 296/346 = q (rather than q^{2}) and so will not square root it so they won't get mp 2
			11	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i)	osmosis ;	1	Mark the first answer. If the first answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 marks. DO NOT CREDIT diffusion
		(ii)	fit between (phospho)lipids / through (phospho)lipid (bi)layer ; via, protein channels / protein pores / aquaporins ;	2	DO NOT CREDIT fit through phospholipids (molecules) DO NOT CREDIT carrier proteins - if this is used do not award mp 2 IGNORE transport proteins
	(b)		cell wall ; provides strength / withstands (internal) pressure / prevents cell membrane over expanding / exerts pressure potential ; limits uptake of water ;	2 max	'has a strong cell wall' = $\mathbf{2}$ marks IGNORE rigidity (of wall), cytoplasm pushes against cell wall ACCEPT stops uptake of water (when turgid)
	(c)	(i)	between -1451 and -1799;	1	Ensure figure is a negative number CREDIT a range or single value within this range

Question		Expected Answers	Marks	Additional Guidance
(a)	(i)	osmosis ;	1	Mark the first answer. If the first answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = $\mathbf{0}$ marks. DO NOT CREDIT diffusion
	(ii)	fit between (phospho)lipids / through (phospho)lipid (bi)layer ; via, protein channels / protein pores / aquaporins;	2	DO NOT CREDIT fit through phospholipids (molecules) DO NOT CREDIT carrier proteins - if this is used do not award mp 2 IGNORE transport proteins
(b)		cell wall ; provides strength / withstands (internal) pressure / prevents cell membrane over expanding / exerts pressure potential ; limits uptake of water;	2 max	'has a strong cell wall' = $\mathbf{2}$ marks IGNORE rigidity (of wall), cytoplasm pushes against cell wall ACCEPT stops uptake of water (when turgid)
(c)	(i)	between -1451 and -1799;	1	Ensure figure is a negative number CREDIT a range or single value within this range

Quest	Expected Answers	Marks	Additional Guidance
(d)	reliable R1 observe more pieces of onion (epidermis from each solution) ; R2 count more cells (in each piece of epidermis) ; R3 calculate a mean ; R4 identify / ignore anomalous results ; $\max 3$ accurate idea of: A1 use, more / intermediate, concentrations within existing range / smaller gap between concentrations / closer (concentration) values ; A2 narrower range around 50\% plasmolysis / $0.4-0.7 \mathrm{~mol} \mathrm{dm}^{-3} /-1120 \text { to }-2180 \mathrm{kPa} \text {; }$ A3 take photographs and mark cells as counting ;	4 max	DO NOT CREDIT 'repeats' unless qualified ALLOW 'repeat the results / experiment' to indicate more pieces of epidermis IGNORE average ACCEPT outliers for anomalies IGNORE removes / avoids, anomalies IGNORE lack of units ACCEPT examples of values quoted in between original values e.g. 0.25, 0.35, etc. ACCEPT 0.2 and 0.9 ACCEPT examples of values if clearly showing application of correct narrower range e.g. $0.45,0.55,0.65$ For A2 DO NOT CREDIT quoted values extend beyond correct narrower range e.g. $0.35,0.55,0.75$
	Total	12	

